
Real Time kernel

 - 1 -

A New Real-time Kernel

development on an

embedded platform

CSC714: Real Time Systems Project – Final Report
 Spring 2009

BALASUBRAMANYA BHAT

(bbhat@ncsu.edu)

SANDEEP BUDANUR RAMANNA

(sbudanu@ncsu.edu)

Real Time kernel

 - 2 -

Table of contents

1. OVERVIEW 4

2. INTRODUCTION 4

3. FEATURES SUPPORTED 5

4. MODULES 6

5. DESIGN & IMPLEMENTATION 7

5.1. Coding Standards 7

5.2. Interrupt Vectors 7

5.3. Initialization routines 7
5.3.1. Clear BSS Section: 7
5.3.2. CPU Initializations: 7
5.3.3. System Stack Setup: 7
5.3.4. Initialization of global variables with assigned values: 8

5.4. Invocation of user 'main() function 8

5.5. Kernel APIs 8

5.6. Kernel Objects 9

5.7. Global Time 10

5.8. Periodic Task Scheduling 10

5.9. Idle Task 12

5.10. Resources 13

5.11. Context Switch functions 13

5.12. Idle Task 13

5.13. Resources 14

5.14. Context Switch functions 14

5.15. Interrupt Context 14

Real Time kernel

 - 3 -

5.16. Critical Section 15

5.17. Context Switch functions 15

5.18. Interrupt Context 16

5.19. Critical Section 16

6. RESULTS 17

7. SUMMARY 18

REFERENCES 18

APPENDIX 19

Real Time kernel

 - 4 -

1. Overview

Real Time Operating Systems use specialized scheduling algorithms to provide

predictable behavior in hard real-time systems. The scheduler has to guarantee

that all periodic tasks meet their respective deadlines. Therefore the scheduler

forms the core of any real-time kernel. As part of this project, we intend to

implement a real time kernel which supports pre-emptive Earliest Deadline

First(EDF) scheduling for periodic tasks and a simple pre-emptive static priority

scheduling for aperiodic tasks. The real-time kernel also supports

synchronization primitives like semaphores and mutex.

2. Introduction

Periodic tasks release their jobs at regular intervals each of which needs to be

completed before their respective deadline. A hard real-time system has to

ensure that all deadlines are met for all the jobs. In a soft real-time system, the

deadlines can be missed occasionally. The deadlines can be less than, equal to or

greater than the task period. The EDF scheduler always executes the job with the

next earliest deadline at every scheduling instant. Aperiodic tasks can be

scheduled when no periodic tasks are running that is aperiodic tasks are run in

the available slack time.

The example below shows the operation of EDF scheduling algorithm on tasks T1

(0, 4, 1, 3), T2 (0, 8, 1, 5), T3 (0, 10, 2, 6) and T4 (0, 15, 4, 9) are periodic tasks with

periods P1<P2<P3<P4.

Fig-1: EDF scheduling

Slack-Aperiodic tasks can be

scheduled here

Real Time kernel

 - 5 -

Non-preemptive EDF is not optimal and hence pre-emptive EDF was considered

as the scheduling algorithm in the real-time kernel.

3. Features Supported

- EDF based scheduling for periodic tasks.

- Periodic tasks with deadlines equal to or less than the period.

- The scheduler shall also support aperiodic tasks.

- If two or more jobs have same deadline, then they are scheduled in the FIFO

manner.

- The scheduler is capable of creating tasks based on phase, period, execution

time and relative deadlines.

- Schedulability test for each periodic task when the task is created. The task is

successfully created only if the schedulability test passes.

- Methods for periodic and aperiodic tasks to sleep for given amount of time.

- Methods related to task synchronization like creation of mutex/semaphores.

- An Idle task which is executed when there are no tasks in ready queue.

- Tracking the current CPU utilization.

- All time values have one micro second resolution.

- The execution time for each job is strictly monitored and shall not be

allowed to exceed.

- The aperiodic tasks have lesser priority than all periodic tasks.

- The aperiodic tasks are scheduled using static priority based preemptive

Real Time kernel

 - 6 -

scheduling during slack time .

- The scheduler is easily portable to different platforms.

- The scheduler is quite efficient as context switching routines and ISRs are

written in assembly code.

- The scheduler has a small memory footprint.

4. Modules

The real-time kernel contains several modules as listed above and the

corresponding methods supported by each module are shown within the

respective block.

System/Task Management
OS_Init()
OS_CreatePeriodicTask()
OS_CreateAPeriodicTask()
OS_Sleep()
OS_Start()
OS_GetElapsedTime()
OS_GetThreadElapsedTime()
C6713_BuildTaskStack()
C6713_IntContextStore()
C6713_ContextRestore()
C6713_ContextSw()
C6713_SystemInit()
ChangeToIntContext()

Resource Management
OS_SemInit()
OS_SemWait()
OS_SemPost()
OS_SemDestroy()
OS_SemGetvalue()
OS_MutexInit()
OS_MutexLock()
OS_MutexUnlock()
OS_MutexDestroy()

Interrupt management
Nano_InitInterrupts()
_disable_interrupt()
_enable_interrupt()
OSTimer1ISR()
OSTimer2ISR()
Nano_Timer1ISRHook()
Nano_Timer2ISRHook()

Queue Management
Nano_QueueInit()
Nano_QueueInsert()
Nano_QueueDelete()
Nano_QueueGet()
Nano_QueuePeek()

Timer Management
Nano_InitTimer()
Nano_UpdateTimer()
Nano_SetBudgetTimer()

Real Time kernel

 - 7 -

5. Design & Implementation

The real-time kernel is written partly in C and partly in Assembly. Various parts

of the Kernel are described below:

5.1. Coding Standards

We attempted to standardize coding standards before we started coding. See

'CodingStandards.txt' for the coding standard specification.

5.2. Interrupt Vectors

The interrupt vectors are setup using C6000 Assembly. The file

C6713_Vectors.asm has all the interrupt vectors in it. Mainly we are interested in

reset interrupt, Timer 0 Interrupt and Timer 1 Interrupts. All remaining

interrupts are made to end up in a infinite loop. The reset vector has calls to

Initialization routines described below. The Timer 0/1 vectors make calls to

appropriate handler in C files (Nano_Timer.c)

5.3. Initialization routines

When the system starts, certain initializations need to be made before the control

can be transferred to the 'main()' function. They are:

5.3.1. Clear BSS Section:

Before the control can go to 'main', we need to set all the data in BSS sections to

zero as the programmer expects all global & static variables to be initialized to

zero. The code for this can be found in C6713_OS_Init.asm.

5.3.2. CPU Initializations:

We also need to perform certain CPU register initializations like ISTP (interrupt

vector table address register), CSR, IER initialization etc. The code for this can be

found in _C6713_SystemInit function within C6713_OS_Init.asm.

5.3.3. System Stack Setup:

Our kernel is designed to work with or without the CCS provided CRT libraries.

When we are not using ready CRT libraries, we need to do certain initializations

ourselves. Especially all CRT libraries have 'c_int00' function which sets up stack.

In the absence of CRT, we need to do this our selves. The function 'c_int00' in file

'autoinit.c' initializes the CPU SP register to point to the bottom of the system

stack region declared in 'autoinit.c'. Till this is done, we cannot make any C

Real Time kernel

 - 8 -

function calls (use branch instructions instead). We also setup the DP (register

B14, data pointer) register to point to the beginning of the BSS section. All global

data are addressed relative to this register.

5.3.4. Initialization of global variables with assigned values:

 In the absence of CRT, we ourselves need to take care of assigning

initialized global variables to their initialization values. The compiler puts all

initialized variable addresses and their values in 'cinit' memory section. As part

of system initialization, we need to take these values and assigned them to

their corresponding addresses. The '_auto_init()' function in 'autoinit.c' file has

the code for doing this.

5.4. Invocation of user 'main() function

 After all the system initializations described above, the user main()

function is called. By this time all global/static variables are set to zero, initialized

variables are set to their initialized values. The system stack is setup. The main()

function is called under the system context itself, which is currently setup with

1024 bytes of stack. The programmer has to take care that he doesn't exceed this

limit within main function or the functions called by main.

 The programmer is expected to call 'OS_Init()' function before he calls any

other OS functions. He can create few periodic & aperiodic tasks within main as

he likes. And at the end he should call 'OS_Start()' function. This function

actually starts the OS scheduling. It is important to note that this function never

returns.

 The picture 1 shows a sample of how main() function looks like. In this

picture it creates 4 periodic tasks with different periods, phase, deadlines and

execution times.

5.5. Kernel APIs

 All APIs provided by the kernel are listed in 'NanoOS.h' file. This basically

provides APIs for creating periodic & aperiodic tasks, semaphore management,

getting information on task CPU usage, global CPU usage, Sleep etc. Please see

'NanoOS.h' for details of all the APIs and their semantics.

 We can see that the creation function for periodic tasks take all 4

parameter of the periodic task model (phase, period, deadline & execution

Real Time kernel

 - 9 -

budget). All these parameters can be specified with up to 1 micro second

resolution. We can also see that for periodic tasks, we do not take priority as one

of the inputs as periodic tasks are scheduled based on the pre-emptive EDF

scheduling which is a dynamic priority algorithm. Where as the priority is one of

the arguments for creating aperiodic tasks.

Fig-2: Sample test application

5.6. Kernel Objects

 The task control blocks for tasks, semaphore objects etc form the kernel

objects. The basic philosophy of our kernel is not use any dynamic memory at

the kernel level. Hence we rely on the programmer to provide memory for the

Real Time kernel

 - 10 -

kernel objects. Since in our embedded platform we do not have separation of

kernel space and user space this should be fine. As shown in the picture 1, the

task/semaphore structure are declared globally or created dynamically and

passed to task/semaphore creation routines.

5.7. Global Time

We have two 32 bit counters in our embedded platform which counts once for

every 4 CPU clock cycles. Using 32 bit counters for keeping track of the current

time is not sufficient. We would need a 64 bit counter for this purpose. We

achieve this by using 64 bit software timer. When the scheduler is running we set

the timer0 to interrupt at the immediate next pending deadline / release time of

some task. This time is always short enough to fit within 32 bits. When the

interrupt occurs, we update the software global timer with the time that has

elapsed since the last timer0 interrupt. Thus we maintain a continuously running

64 bit global time. All periodic tasks maintain one 'alarm_time' attribute within

their TCB which stand for when does the task requires next attention (either

because of a deadline expiry or to introduce new job for that task).

5.8. Periodic Task Scheduling

We use Preemptive EDF policy to schedule periodic tasks. The Fig-3 shows how

this scheduling is done. The following steps summarize the basic scheduling for

periodic tasks:

1. When a new task is created, an entry level schedulability test is performed

before the task is accepted.

2. Once the task is accepted, it is added to the 'WaitQ' with the next wakeup

time as its 'phase'. Also the 'Reschedule()' function is called to make sure

that this task is taken for scheduling if it has a nearest deadline.

3. When the timer0 interrupts for the first time after OS_Start(), we start the

software global timer with 0 value.

4. Timer0 Interrupt Handler

o Whenever the timer0 interrupt occurs, we first check the tasks front

of the ReadyQ which have their 'alarm_time' as the current global

time. All these tasks had their deadline occurring at this time.

Hence we move all those tasks from the 'ReadyQ' to 'WaitQ'. Since

all these tasks missed their deadlines, we increment the

'deadline_miss' count for the corresponding tasks.

Real Time kernel

 - 11 -

o We do not need to iterate through all tasks in the 'ReadyQ'. We

only need to iterate through the tasks at the front of the queue as

long as the 'alarm_time' for those tasks is = the current global time.

As the 'ReadyQ' is a priority queue, this would suffice.

o When the tasks are added to 'WaitQ' from the 'ReadyQ' we need to

set their alarm time as the next release time for that task. Based on

the requested alarm time for a given task, it gets added at a proper

location within the 'WaitQ'.

o If certain tasks had deadline = period, we reintroduce the task back

to 'ReadyQ' instead of 'WaitQ' as we needed to create a new job for

this task.

o We then iterate through the tasks at the front of the 'WaitQ' which

have their alarm_time as the current global time. All these tasks

need to reintroduce new jobs at this time. Hence we move these

tasks from 'WaitQ' to 'ReadyQ' with the alarm time as the next

deadline for the new job.

o Once we move tasks b/w Ready/WaitQ, we should now take the

front most task from the ReadyQ and switch to that task. This task

starts running as soon as the Timer0 ISR returns.

o If there was no task in ReadyQ, we should take the first task from

the Aperiodic task queue and switch to that task.

5. Budget Tracking using Timer1.

• Whenever a new job is introduced (task moves from WaitQ to

ReadyQ), we set the remaining_time parameter for the task as its

execution time specified at the time of task creation.

• Whenever we switch to a periodic task (it has to be at the front of the

ReadyQ), we set the timer1 to with a time out as the current task's

'remaining_time'.

• Whenever a periodic task is switched out (due to a new task with a

smaller deadline), we see how much of the remaining_time is

remaining in Timer1, and set this value in the outgoing task's TCB.

This value will be later used when that task is switched back in.

• Whenever the timer1 is triggered because the current task has

exceeded its deadline, we get a timer1 interrupt. At this point we

increment the 'TBE_count' for the task for having exceeded its budget

and move that task from 'ReadyQ' to the 'WaitQ' with the alarm_time

Real Time kernel

 - 12 -

as its next release time. We also keep track of total execution time

given to a task in the 'accumulated_budget' parameter in the TCB.

6. Scheduling Aperiodic task:

When timer0 interrupt occurs after the tasks are moved between 'WaitQ' and

'ReadyQ', the control will be transferred to the first task in the 'ReadyQ'. If there

were no task in the 'ReadyQ', we would switch to the first task in the

'AperiodicQ'.

Fig-3: High level design of the scheduler

5.9. Idle Task

 When the main() function calls 'OS_Start()' function, it starts the Timer1

interrupt which will then take care of scheduling. The main thread then turns

itself into an 'idle' task by creating a 'Aperiodic' task TCB for itself and inserting

itself into the 'AperiodicQ' with the lowest priority. Whenever no other tasks are

ready to run, this idle task will be run. See the 'OS_Start()' in 'Nano_Sched.c' file.

Real Time kernel

 - 13 -

5.10. Resources

 As discussed earlier, we support creating semaphores. The space for the

semaphore object is created within the user space and passed onto the kernel. As

part of semaphore structure, it maintains a single queue of blocked tasks. This is

also a priority queue. The periodic tasks are inserted at the front ordered by their

alarm_time. The aperiodic tasks are inserted from the tail ordered by their

priority. At some later point, we intend to create separate block queue for

periodic and aperiodic tasks within the resource object for efficiency reasons.

5.11. Context Switch functions

We have several routines for actually swapping context. See file

'C6713_OS_Context.asm' for all context switching functions.

The function, _C6713_BuildTaskStack builds initial stack for a new periodic &

aperiodic task.

The function _C6713_IntContextStore function stores the context of the current

task into it's stack when an interrupt occurs. Once all registers are stored in the

stack, it updates the latest stack pointer in the current task's TCB.

The function _C6713_ContextRestore, restores the current context to a new task

passed as an argument. It also changes the current task pointer in

'g_current_task' global variable.

The function _C6713_ContextSw switches the context from one thread to another

thread. It first stores the current context in the current task's stack, update its

TCB and the new task, restore the context to the new thread, update

g_current_task variable.

Note that all these functions have portions which need to be executed within the

critical section and portions which can be executed outside the critical section.

Effort is taken to minimize the time spent within the critical section.

5.12. Idle Task

 When the main() function calls 'OS_Start()' function, it starts the Timer1

interrupt which will then take care of scheduling. The main thread then turns

itself into an 'idle' task by creating a 'Aperiodic' task TCB for itself and inserting

itself into the 'AperiodicQ' with the lowest priority. Whenever no other tasks are

ready to run, this idle task will be run. See the 'OS_Start()' in 'Nano_Sched.c' file.

Real Time kernel

 - 14 -

5.13. Resources

 As discussed earlier, we support creating semaphores. The space for the

semaphore object is created within the user space and passed onto the kernel. As

part of semaphore structure, it maintains a single queue of blocked tasks. This is

also a priority queue. The periodic tasks are inserted at the front ordered by their

alarm_time. The aperiodic tasks are inserted from the tail ordered by their

priority. At some later point, we intend to create separate block queue for

periodic and aperiodic tasks within the resource object for efficiency reasons.

5.14. Context Switch functions

We have several routines for actually swapping context. See file

'C6713_OS_Context.asm' for all context switching functions.

The function, _C6713_BuildTaskStack builds initial stack for a new periodic &

aperiodic task.

The function _C6713_IntContextStore function stores the context of the current

task into it's stack when an interrupt occurs. Once all registers are stored in the

stack, it updates the latest stack pointer in the current task's TCB.

The function _C6713_ContextRestore, restores the current context to a new task

passed as an argument. It also changes the current task pointer in

'g_current_task' global variable.

The function _C6713_ContextSw switches the context from one thread to another

thread. It first stores the current context in the current task's stack, update its

TCB and the new task, restore the context to the new thread, update

g_current_task variable.

Note that all these functions have portions which need to be executed within the

critical section and portions which can be executed outside the critical section.

Effort is taken to minimize the time spent within the critical section.

5.15. Interrupt Context

Whenever an interrupt occurs we store the context of the currently running

thread using the function _C6713_IntContextStore. We then need some other

context to run the ISR. This is accomplished by having a separate stack called

'Interrupt Stack'. Every ISR changes the context to interrupt context before it

executes rest of the interrupt handling. Changing to interrupt context just

requires us to set the SP to the bottom of interrupt stack. When the ISR is about

to return it always returns to some task by switching to that thread's context.

Note that we do not store the registers in the interrupt stack when we return to a

Real Time kernel

 - 15 -

task. And every time an interrupt occurs we start from the bottom of interrupt

stack. This is highly efficient. At this point of time we do not allow nested

interupts.

5.16. Critical Section

For all critical sections within the kernel we use enable/disable interrupts.

However, we make every effort to make sure that this critical section is kept very

small.

 As discussed earlier, we support creating semaphores. The space for the

semaphore object is created within the user space and passed onto the kernel. As

part of semaphore structure, it maintains a single queue of blocked tasks. This is

also a priority queue. The periodic tasks are inserted at the front ordered by their

alarm_time. The aperiodic tasks are inserted from the tail ordered by their

priority. At some later point, we intend to create separate block queue for

periodic and aperiodic tasks within the resource object for efficiency reasons.

5.17. Context Switch functions

We have several routines for actually swapping context. See file

'C6713_OS_Context.asm' for all context switching functions.

The function, _C6713_BuildTaskStack builds initial stack for a new periodic &

aperiodic task.

The function _C6713_IntContextStore function stores the context of the current

task into it's stack when an interrupt occurs. Once all registers are stored in the

stack, it updates the latest stack pointer in the current task's TCB.

The function _C6713_ContextRestore, restores the current context to a new task

passed as an argument. It also changes the current task pointer in

'g_current_task' global variable.

The function _C6713_ContextSw switches the context from one thread to another

thread. It first stores the current context in the current task's stack, update its

TCB and the new task, restore the context to the new thread, update

g_current_task variable.

Note that all these functions have portions which need to be executed within the

critical section and portions which can be executed outside the critical section.

Effort is taken to minimize the time spent within the critical section.

Real Time kernel

 - 16 -

5.18. Interrupt Context

Whenever an interrupt occurs we store the context of the currently running

thread using the function _C6713_IntContextStore. We then need some other

context to run the ISR. This is accomplished by having a separate stack called

'Interrupt Stack'. Every ISR changes the context to interrupt context before it

executes rest of the interrupt handling. Changing to interrupt context just

requires us to set the SP to the bottom of interrupt stack. When the ISR is about

to return it always returns to some task by switching to that thread's context.

Note that we do not store the registers in the interrupt stack when we return to a

task. And every time an interrupt occurs we start from the bottom of interrupt

stack. This is highly efficient. At this point of time we do not allow nested

interupts.

5.19. Critical Section

For all critical sections within the kernel we use enable/disable interrupts.

However, we make every effort to make sure that this critical section is kept very

small. Whenever an interrupt occurs we store the context of the currently

running thread using the function _C6713_IntContextStore. We then need some

other context to run the ISR. This is accomplished by having a separate stack

called 'Interrupt Stack'. Every ISR changes the context to interrupt context before

it executes rest of the interrupt handling. Changing to interrupt context just

requires us to set the SP to the bottom of interrupt stack. When the ISR is about

to return it always returns to some task by switching to that thread's context.

Note that we do not store the registers in the interrupt stack when we return to a

task. And every time an interrupt occurs we start from the bottom of interrupt

stack. This is highly efficient. At this point of time we do not allow nested

interupts.

Real Time kernel

 - 17 -

6. Results
We implemented our new kernel on C6713 DSK from Texas Instruments. This

has a TMS320C6713 DSP Processor which is running at 150MHz (Fig-4). This

processor has VLIW Architecture (with 8 instructions / cycle) where a single

instruction extending up to 256 bits.

Fig-4: C6713 DSK

Our implementation resulted in about 2400 SLOC with about 1000 SLOC in

Assembly.

We created multiple periodic tasks with different (f, p, e, D) parameters and they

get scheduled properly. Currently we used 4 user LEDs being controlled from 4

different tasks at different periods/phases. It works properly.

We tested d parameter by having code similar to what is given below, this code

basically toggles one LED and waits for the deadline to pass. Once the deadline

is expired, it gets preempted. In the next period when the task comes up again, it

quits the while loop and returns without doing anything else. In the next period

again the same thing repeats. By looking at the LEDs blinking and the

dline_miss_count and exec_count (# of jobs executed for that task) we can infer

the correct behavior.

 void task_fn(int * ptr)

 {

 OS_PeriodicTask * task = (OS_PeriodicTask *) g_current_task;

 UINT32 dm = task->dline_miss_count;

 LED_toggle(*ptr);

 while(dm == task->dline_miss_count)

 {}

 }

Real Time kernel

 - 18 -

Similar test with TBE_count also works but has a bug which need to be fixed.

We also are planning for more tests like running standard benchmark tests on

multiple tasks and comparing the performance against plain Priority based

scheduling of MicroC OS and RMA scheduler developed for the FREEDM

project to get a feel of the performance of our current implementation.

7. Summary
o Implemented on C6713 DSK

o 320C6713 DSP Processor

o IW Architecture (with 8 instructions / cycle)

o Tested for all parameters (f, p, e, D)

o Keeps track of Deadline miss & TBE counts for every thread

o Also keeps track of thread wise execution time upto 1us resolution.

o About 2400 SLOCs of source code (1000 lines assembly)

References
[1] Real-Time Systems, Jane W.S. Liu, Pearson Education

[2] Lecture notes

[3] http://www.ti-estore.com/Merchant2/merchant.mvc?Screen=PROD&Product_Code=TMDSDSK6713

Real Time kernel

 - 19 -

Appendix
API Description

// macro for entering the critical section

#define OS_ENTER_CRITICAL() _disable_interrupt()

//macro for leaving the critical section

#define OS_EXIT_CRITICAL() _enable_interrupt()

///

// Task creation APIs

///

///

//API to create periodic tasks

//@period_in_us - period of the task in micro seconds

//@deadline_in_us - deadline of the task in micro seconds

//@budget_in_us - WCET of the task in micro seconds

//@phase_shift_in_us - phase of the task in micro seconds

//@stack - pointer to the stack

//@stack_size_in_bytes - size of the stack in bytes

//@task - pointer to the task contol block (user allocated memory)

//@periodic_entry_function - function pointer where the execution begins on creation of a job

//@pdata - parameters passed to 'periodic_entry_function'

///

OS_Error OS_CreatePeriodicTask(

UINT32 period_in_us,

UINT32 deadline_in_us,

UINT32 budget_in_us,

UINT32 phase_shift_in_us,

UINT32 * stack,

UINT32 stack_size_in_bytes,

OS_PeriodicTask *task,

void (*periodic_entry_function)(void *pdata),

void *pdata);

///

//API to create aperiodic tasks

//@priority - priority of the aperiodic task (0 - HIGHEST, 255 - LOWEST)

//@stack - pointer to the stack

//@stack_size_in_bytes - size of the stack in bytes

//@task - pointer to the task contol block (user allocated memory)

//@periodic_entry_function - function pointer where the execution begins on creation of a job

//@pdata - parameters passed to 'periodic_entry_function'

///

OS_Error OS_CreateAperiodicTask(

UINT16 priority,

UINT32 * stack,

UINT32 stack_size_in_bytes,

OS_AperiodicTask *task,

void (*task_entry_function)(void *pdata),

void *pdata);

Real Time kernel

 - 20 -

///

// The following function Initializes the OS data structures

///

void OS_Init();

///

// The following function starts the OS scheduling

// Note that this function never returns

///

void OS_Start();

///

// The below function, gets the total elapsed time since the beginning

// of the system in microseconds.

///

UINT64 OS_GetElapsedTime();

///

// The following function gets the total time taken by the current

// thread since the thread has begun in microseconds. Note that this is not the global

// time, this is just the time taken from only the current thread.

///

UINT64 OS_GetThreadElapsedTime();

///

// Semaphore functions

///

///

//API to create semaphore

//@sem - pointer to semaphore control structure (user allocated memory)

//@pshared - semaphore is shared between processes (not used currently)

//@value - initial value of the semaphore

///

OS_Error OS_SemInit(OS_Sem *sem, INT16 pshared, UINT32 value);

///

//API to wait on a semaphore

//@sem - pointer to semaphore control structure created using OS_SemInit

///

OS_Error OS_SemWait(OS_Sem *sem);

///

//API to signal a task waiting on a semaphore

//@sem - pointer to semaphore control structure created using OS_SemInit

///

OS_Error OS_SemPost(OS_Sem *sem);

///

//API to destroy a semaphore

//@sem - pointer to semaphore control structure created using OS_SemInit

///

OS_Error OS_SemDestroy(OS_Sem *sem);

Real Time kernel

 - 21 -

///

//API to read the value of a semaphore

//@sem - pointer to semaphore control structure created using OS_SemInit

//@val - pointer to an integer where semaphore's value is returned

///

OS_Error OS_SemGetvalue(OS_Sem *sem, INT32 *val);

//

//API to create a mutex

//@mutex - pointer to mutex control structure (user allocated memory)

///

OS_Error OS_MutexInit(OS_Mutex *mutex);

///

//API to lock a mutex

//@mutex - pointer to mutex control structure created using OS_MutexInit()

///

OS_Error OS_MutexLock(OS_Mutex *mutex);

///

//API to unlock a mutex

//@mutex - pointer to mutex control structure created using OS_MutexInit()

///

OS_Error OS_MutexUnlock(OS_Mutex *mutex);

///

//API to destroy a mutex

//@mutex - pointer to mutex control structure created using OS_MutexInit()

///

OS_Error OS_MutexDestroy(OS_Mutex *mutex);

